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Abstract. This paper proposes a correct-by-construction method to
build realizable choreographies described using conversation protocols
(CPs). We define a new language consisting of an operators set for
incremental construction of CPs. We suggest an asynchronous model
described with the Event-B method and its refinement strategy, ensur-
ing the scalability of our approach.
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1 Introduction

Distributed systems are pervasive in areas like embedded systems, Cyber Physi-
cal systems, medical devices and Web applications. In a top-down design of such
systems, the interaction among peers is usually defined using a global specifi-
cation called conversation protocols (CP), aka choreography in SOC [9]. These
CPs specify interactions among peers as the allowed sequences of sent messages.

A main concern, already addressed by research community, is the verifica-
tion of CP realizability i.e., verification whether there exists a set of peers whose
composition generates the same sequences of sending messages as specified by
the CP. Considering asynchronous communication, this realizability problem is
undecidable in general [8] due to possible ever-increasing queuing mechanism and
unbounded buffers. The work of [5] proposed a necessary and sufficient condition
for verifying whether a CP can be implemented by a set of peers communicat-
ing asynchronously using FIFO buffers with no buffer sizes restrictions. This
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work solves the realizability issue for a subclass of asynchronously communicat-
ing peers (synchronizable systems) i.e., systems composed of interacting peers
behaving equivalently either with synchronous or asynchronous communication.

A CP is realizable if there exists a set of peers implementing this CP, i.e.,
the peers send messages to each other in the same order as the CP does, and
their composition is synchronizable. In [5], checking CP realizability applies three
steps: (i) peer projection from CP; (ii) checking synchronizability; and (iii) check-
ing equivalence between CP and its distributed system obtained after projection.

The work given in [5] relies on model checking for systems with reasonable
sizes (i.e., number of states, transitions and communicating peers). This verifi-
cation procedure is global and a posteriori. It considers the whole CP and its
projection, and does not handle compositional verification.

This paper proposes a compositional and incremental formal verification pro-
cedure that scales to systems of arbitrary sizes. It promotes a top-down design of
realizable CPs following a correct-by-construction method which decreases the
complexity of the verification task and supports real-world complex systems.
We define a compositional language using an algebra of operators (sequence,
branching, and loop). From an initial basic CP, we inductively (incrementally)
build a realizable CP by composing other realizable ones, using these composi-
tion operators while preserving realizability [5] w.r.t identified conditions. The
informal definition of these operators were originally introduced in [6,7] the fea-
sibility of the approach on toy case studies is shown. [6,7] did not give the formal
proof of correctness of realizability preservation of the defined operators. Conse-
quently, in this paper, we provide a correctness support for the results sketched
in [6,7]. An inductive proof, based on realizability invariant preservation, is set
up with Event-B [2] on Rodin [19] platform. Refinement is used to decompose
this invariant in order to ease the proof and development processes. The generic
model we define is scalable and its parameters have arbitrary values (i.e., num-
bers of peers, buffer sizes, number of states and transitions can take any value
in their corresponding sets of possible values). Furthermore, this model can be
instantiated to describe any CP by incremental application of the composition
operators we defined.

In the remainder, Sect. 2 introduces the formal definitions and the back-
ground our proposal relies on. Section 3 presents the set of composition operators
together with the set of identified sufficient conditions that ensure realizability of
the built CPs. The formal Event-B development based on the refinement strat-
egy we have set up is shown in Sect. 4. Finally, Sect. 5 overviews related work
Sect. 6 concludes this work.

2 Background and Notations

2.1 Model

We use labeled transition systems (LTSs) for modeling CP and peers included
in that specification. This model defines messages order being sent in CP.
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Definition 1 (Peer). A peer is an LTS P = (S, s0, Σ, T ) where S is a finite
set of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? ∪ {τ} is a finite alphabet
partitioned into a set of send messages, receive messages, and the internal action,
and T ⊆ S × Σ × S is a transition relation.

We write m! for a send message m ∈ Σ! and m? for a receive message
m ∈ Σ?. We use the symbol τ for representing internal activities. A transition
is represented as s

l−→ s′ where l ∈ Σ. Notice that we refer to a state sf ∈ S as
final if there is no outgoing transition at that state.

Definition 2 (CP). A conversation protocol CP for a set of peers {P1, . . . ,Pn}
is a LTS CP = (SCP , s0CP , LCP , TCP ) where SCP is a finite set of states and
s0CP ∈ SCP is the initial state; LCP is a set of labels where a label l ∈ LCP is
denoted mPi,Pj such that Pi and Pj are the sending and receiving peers, respec-
tively, Pi �= Pj, and m is a message on which those peers interact; finally,
TCP ⊆ SCP × LCP × SCP is the transition relation. We require that each mes-
sage has a unique sender and receiver: ∀{mPi,Pj ,m′P′

i,P′
j} ⊆ LCP : m = m′ =⇒

Pi = P ′
i ∧ Pj = P ′

j.

In the remainder of this paper, we denote a transition t ∈ TCP as s
mPi,Pj−−−−−→ s′

where s and s′ are source and target states and mPi,Pj is the transition label.
We refer to a basic CP =< SCP , s0CP , LCP , TCP > as CPb if and only if TCP =

{sCP
mPi,Pj−−−−−→ s′

CP}. We refer to the set of final states as Sf where the system can
terminate its execution. It is worth noticing that the peers’ LTSs are computed
by projection from CP as follows:

Definition 3 (Projection). Let the projection function ↓ CP which returns
the set of peers LTSs Pi = <Si, s

0
i , Σi, Ti> obtained by replacing in CP =

<SCP , s0CP , LCP , TCP> each label (Pj ,m,Pk) ∈ LCP with m! if j = i with
m? if k = i and with τ (internal action) otherwise; and finally removing the
τ -transitions by applying standard minimization algorithms [14].

Definition 4 (Synchronous System). The synchronous system denoted as
Syssync(P1, . . . ,Pn) = (Ss, s

0
s, Ls, Ts) corresponds to the product of peer LTSs

composed under synchronous communication semantics.

In this context, a communication between two peers occurs if both agree on
a synchronization label, i.e., if one peer is in a state in which a message can
be sent, then the other peer must be in a state in which that message can be
received. A peer can evolve independently from others through internal actions.

Definition 5 (Asynchronous System). In the asynchronous system denoted
as Sysasync(P1, . . . ,Pn) = (Sa, s

0
a, La, Ta), peers communication holds through

FIFO buffers. Each peer Pi is equipped with an unbounded message buffer Qi.

Where a peer can either send a message m ∈ Σ! to the tail of the receiver buffer
Qj at any state where this sent message is available, read a message m ∈ Σ? from
its buffer Qi if the message is available at the buffer head, or evolve independently
through an internal action. Reading from the buffer is non observable, and it is
presented by internal action in the asynchronous system.
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2.2 Realizability

The definition of realizability we use in this paper is borrowed from [5]. A CP
is realizable if there exists a set of peers where their composition generates the
same sequences of sending messages as specified in CP. In [5] a defined sufficient
and necessary condition characterizes the set R ⊆ CP of realizable CPs. A
deterministic cp ∈ R is realizable iff the system obtained from the composition
of the projected peers of cp is synchronizable, well-formed, and equivalent to the
initial CP. A proof of correctness of global system realizablity using Event-B is
available in [13].

Definition 6 (Deterministic Choice). Let DC be the set of deterministic

CPs, thus ∀CP ∈ DC : ∀sCP ∈ SCP , �{sCP
mPi,Pj−−−−→ s′

CP , sCP
mPi,Pj−−−−→ s′′

CP } ⊆
TCP where s′

CP �= s′′
CP .

Definition 7 (Equivalence). CP is equivalent to Syssync(↓CP), denoted
CP ≡ Syssync(↓CP), if they have equal message sequences, i.e., trace equiva-
lence [16].

A system is synchronizable when its behavior remains the same under both
synchronous and asynchronous communication semantics.

Definition 8 (Synchronizability). Given a set of peers {P1, . . . ,Pn}, the
synchronous system Syssync(P1, . . . ,Pn) = (Ss, s

0
s, Ls, Ts), and the asynchronous

system Sysasync(P1, . . . ,Pn) = (Sa, s
0
a, La, Ta), two states r ∈ Ss and s ∈ Sa

are synchronizable if there exists a relation Sync st between states such that
Sync st(r, s) and:

– for each r
m−→ r′ ∈ Ts, there exists s

m!−−→ s′ ∈ Ta, such that Sync st(r′, s′);
– for each s

m!−−→ s′ ∈ Ta, there exists r
m−→ r′ ∈ Ts, such that Sync st(r′, s′);

– for each s
m?−−→ s′ ∈ Ta, Sync st(r, s′).

Synchronizability is the set of synchronizable systems such that Sysasync(P1,
. . . ,Pn) ∈ Synchronizability ⇔ Sync st(s0s, s

0
a).

Well-formedness states that whenever the size of a receive queue, Qi, of the
ith peer is greater than 0 (i.e., Qi is non-empty), the asynchronous system can
eventually move to a state where Qi is empty.

Definition 9 (Well-formedness). Let WF be the set of well formed sys-
tem. An asynchronous system Sysasync = (Sa, s

0
a, Σa, Ta) defined over a set of

peers {P1, . . . ,Pn} is well-formed, i.e., Sysasync ∈ WF, if and only if ∀sa =
(s1, Q1, . . . , sn, Qn) ∈ Sa, where sa is reachable from s0a = (s01, ε, . . . , s

0
n, ε),

the following holds: if there exists Qi such that | Qi |> 0, then there exists
sa ⇒∗ s′

a ⊆ Ta where s′
a = (s′

1, Q
′
1, . . . , s

′
n, Q′

n) ∈ Sa and ∀Q′
i, | Q′

i |= 0.

Note that ⇒∗ means that there exists one or more transitions in the asyn-
chronous system (Definition 5) leading into the state s′

a.

Definition 10 (Realizability). ∀CP ∈ DC : CP ∈ R ⇐⇒ (CP ≡ Syssync(↓
CP)) ∧ (Sysasync(↓ CP) ∈ Synchronizability) ∧ (Sysasync(↓ CP) ∈ WF ).
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3 CCP Language for Realisable CPs

In this section, we define our composition operators and identify the conditions
sufficient to build CP realizable CP s.

3.1 Composition Operators

We present the proposed composition operators ⊗(�,sfCP ) (sequence), ⊗(+,sfCP )

(branching), and ⊗(�,sfCP ) (iteration) where sfCP ∈ Sf
CP . Each expression of the

form ⊗(op,sfCP )
(CP ,CPb) assumes that the initial state of CPb is fused with the

final state sfCP . In the other word, CPb is appended to CP at state sfCP .

Definition 11. Sequential Composition ⊗(�,sfCP )
. Given a CP, a state sCP ∈

Sf
CP , and a CPb where TCPb

= {sCPb

lCPb−−−→ s′
CPb

}, the sequential composition
CP� = ⊗(�,sCP )(CP ,CPb) means that CPb must be executed after CP starting
from sCP , and:

– SCP� = SCP ∪ {s′
CPb

| sCPb

lCPb−−−→ s′
CPb

∈ TCPb
}

– LCP� = LCP ∪ {lCPb
}

– TCP� = TCP ∪ {sCP

lCPb−−−→ s′
CPb

}
– Sf

CP� = (Sf
CP \ {sCP}) ∪ {s′

CPb
}

Definition 12. Choice Composition ⊗(+,sfCP )
. Given a CP, a state sCP ∈ Sf

CP ,

a set {CPbi | i = [1..n], n ∈ N} such that ∀TCPbi
, TCPbi

= {sCPbi

lCPbi−−−→ s′
CPbi

},
the branching composition CP+ = ⊗(+,sCP )(CP , {CPbi}) means that CP must
be executed before {CPbi} and there is a choice between all {CPbi} at sCP , and:

– SCP+ = SCP ∪ {s′
CPb1

, . . . , sCP ′
bn

| sCPbi

lCPbi−−−→ s′
CPbi

∈ TCPbi
}

– LCP+ = LCP ∪ {lCPbi
, . . . , lCPbn

}
– TCP+ = TCP ∪ {sCP

lCPb1−−−→ s′
CPb1

, . . . , sCP

lCPbn−−−→ s′
CPbn

}
– Sf

CP+
= (Sf

CP \ {sCP}) ∪ {s′
CPb1

, . . . , s′
CPbn

}

Definition 13. Loop Composition ⊗(�,sfCP )
. Given CP, a state sCP ∈ Sf

CP ,

and a set CPb, such that TCPb
= {sCPb

lCPb−−→ sCPb
}, the loop composition CP� =

⊗(�,sfCP )
(CP ,CPb) means that CP must be executed before CP ′

b and every CPbi

can be repeated 0 or more times, and:

– SCP� = SCP

– LCP� = LCP ∪ {lCPb
}

– TCP� = TCP ∪ {sCP

lCPb1−−−→ sCP ′
b
}

– Sf
CP� = Sf

CP
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3.2 Realizable-by-Construction CP

As mentioned in the introduction, our intention is to avoid a posteriori global
verification of realisability. We set up an incremental verification of realisability
using a correct by construction approach. Building CPs using the aforemen-
tioned operators does not guarantee its realisability. Indeed, the definitions of
the previous operators rely on syntactic conditions mainly by gluing final and
initial states of the composed CPs.

Sufficient Conditions. We identified a set of sufficient conditions (i.e., Con-
ditions 1, 2, and 3 which entail realisability when the CPs are built using the
operators we have previously defined. These conditions are based on the seman-
tics of the messages ordering and exchange.

Condition 1 (Deterministic Choice (DC)). See Definition 6.

Condition 2 (Parallel-Choice Freeness (PCF)). Let PCF be the set of

CPs free of parallel choice. Then, CP ∈ PCF iff ∀sCP ∈ SCP , �{sCP
mPi,Pj−−−−→

s′
CP , sCP

m′Pk,Pq−−−−−→ s′′
CP } ⊆ TCP such that Pi �= Pk and s′

CP �= s′′
CP .

Condition 3 (Independent Sequences Freeness (IseqF)). Let ISeqF be
the set of CPs free of independent sequences. Then, CP ∈ ISeqF iff ∀sCP ∈ SCP ,

�{sCP
mPi,Pj−−−−→ s′

CP , s′
CP

m′Pk,Pq−−−−−→ s′′
CP } ⊆ TCP such that Pi �= Pk and Pj �= Pk.

All these conditions are structural conditions defined at the CP level. They do
not involve conditions on the synchronous nor on the asynchronous projections.

Realizable-by-Construction CP Theorems. Table 1 gives the theorems
that ensure the realisability of a CP built incrementally using our composition
operators. Each theorem relies on the previously introduced sufficient conditions.

Proof Sketch. To prove the theorems of Table 1 we rely on a generic proof
pattern consisting in decomposing the realisability condition of Definition 10.
According to this definition, we need to prove equivalence (Definition 7), syn-
chronizability (Definition 8) and well formedness (WF in Definition 9).

Table 1. Theorems for realizable by construction CPs

Theorem 1 CPb ∈ R

Theorem 2 CP ∈ R∧CPb ∈ R∧CP� = ⊗
(�,s

f
CP )

(CP ,CPb) ∈ ISeqF ⇒ CP� ∈ R

Theorem 3 CP ∈ R ∧ {CPbi} ⊆ R ∧ CP+ = ⊗
(+,s

f
CP )

(CP , {CPbi}) ∧ CP+ ∈ DC

∧ CP+ ∈ ISeqF ∧ CP+ ∈ PCF ⇒ CP+ ∈ R

Theorem 4 CP ∈ R∧CPb ∈ R∧CP� = ⊗
(�,s

f
CP )

(CP ,CPb) ∈ ISeqF ⇒ CP� ∈ R
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The proof is a structural induction on the defined operators. Let CPb ∈ R
and CP ∈ R be a basic realizable CP and a realizable CP respectively. We need
to prove that CPop ∈ R holds for each composition operator op ∈ {�,+ �}
when the defined sufficient condition opcond corresponding to conditions 1, 2 and
3 defined above and associated to each op holds.

When considering the equivalence, synchronisability and well formedness,
this proof uses the projection ↓ CPop of CPop. It can be formalised using the
following proof pattern.

CP ∈ R ∧ CPb ∈ R ∧ Opcond =⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CPop≡Syssync(↓CPop )

∧
Sysasync(↓CPop ) ∈ Synchronizability (1)

∧
Sysasync(↓CPop ) ∈ WF

Theorem 1. Any CPb is realizable.

Proof 1. CPb is made of a single transition of the form s
mPi,Pj−−−−−→ s′. Therefore,

the projection will produce two peers Pi and Pj with a single transition where
Pi sends the message m to the receiving peer Pj . This projection is realizable.

Theorem 2. Given an CP = <SCP , s0CP , LCP , TCP> and a CPb such that
CP ∈ R and CPb ∈ R, sCP ∈ Sf

CP , then CP� = ⊗(�,sCP )(CP ,CPb) ∈ R.

Proof 2. The proof is inductive. It follows the previous proof pattern. When
this pattern is instantiated for the sequence operator, we obtain.

CP ∈ R ∧ CPb ∈ R ∧ CP� ∈ ISeqF =⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CP� ≡ Syssync(↓CP� ) (2.a)

∧
Sysasync(↓CP� ) ∈ Synchronizability (2.b) (2)

∧
Sysasync(↓CP� ) ∈ WF (2.c)

Basic case. Let CP = ∅ and a CPb then CP� = ⊗(�,s0CP )
(∅,CPb) ∈ R. So

CP� = CPb . CP� ∈ R holds by Theorem 1 of Table 1.
Inductive Case. Let CP = <SCP , s0CP , LCP , TCP> and a CPb such that CP ∈
R and CPb ∈ R. Let sCP ∈ Sf

CP be the gluing state (i.e. both the final state
of CP and the initial state of CPb). Let sqi denote the ith state in the LTS
associated to peer Pq.

According to the proof schema of Eq. 2, we need to prove the Properties 2.a,
2.b and 2.c

2.a Equivalence property. By recurrence hypotheses we write CP ≡
Syssync(↓ CP), CPb ≡ Syssync(↓ CPb). Let us assume that the sufficient
condition for sequence holds i.e. CP� ∈ ISeqF . We need to prove now that
CP� ≡ Syssync(↓ CP�) (Eq. (1.a)).
Let us consider



8 S. Benyagoub et al.

• any trace TCP = {s0
mPi→Pj−−−−−→ s1, . . . , sn

m′Pk→Pq−−−−−−→ sn+1} in the realizable
CP

• and the trace TCPb
= {sb0

m′′Pt→Pz−−−−−−→ sb1} in the realizable CPb

Since the ISeqF condition holds, two cases are distinguished.
1. Either Pk = Pt, then the following suffixes of the traces occur for peers Pk = Pt,

Pq and Pz

• {. . . , skn m′!−−→ skn+1, s
k
n+1

m′′!−−−→ skn+2} ⊆ Tk

• {. . . , sqn m′?−−→ sqn+1} ⊆ Tq

• {. . . , szn m′′?−−−→ szn+1} ⊆ Tz.
2. or Pq = Pt, then the following traces occurs for peers Pq = Pt, Pk and Pz

• {. . . , skn m′!−−→ skn+1} ⊆ Tk

• {. . . , sqn m′?−−→ sqn+1, s
q
n+1

m′′!−−−→ sqn+2} ⊆ Tq

• {. . . , szn m′′?−−−→ szn+1} ⊆ Tz

Thanks to the ISeqF property, the sending-receiving transition (synchronous
transition) of CPb requires that either the sending peer or the receiving peer
of the CPb are used by the previous transition or the realizable CP . More-
over, it is always performed once the sending-receiving transitions of the syn-
chronous projection of CP are completed. The sending-receiving transition of
CPb becomes the last transition of Syssync(↓ CP�).

2.b Synchronisability condition. By the recurrence hypotheses, we write
Sysasync(↓ CP) ∈ Synchronizability, Sysasync(↓ CPb) ∈ Synchronizability.
Synchronisability is deduced from equivalence and from the ISeqF condition.
The last transition of the traces of ↓ CP� corresponds to Syssync(↓ CPb) =

{sb0
m′′
−−→ sb1} and Sysasync(↓ CPb) = {sb0

m′?−−→ sb, sb
m′′?−−−→ sb1} where Sb

is an intermediate state in the asynchronous projection In this intermediate
state, in which the queues related to the peers contain the message m′′.

2.c Well-formedness condition. Again, as recurrence hyptheses, we write
Sysasync(↓ CP) ∈ WF , Sysasync(↓ CPb) ∈ WF . This means that by hypothe-
ses, the queues are empty in the final state of Sysasync(↓ CP) since it is
realizable (thus well formed). We have to show that the queue is still empty
after running message exchanges of CPb .
When adding a sequence ⊗(�,sfCP )

(CP ,CPb) ∈ ISeqF , the sending transition
of m′′ gives Qi = ∅, Qj = ∅, Qk = ∅, Qq = ∅, Qt = ∅, Qz = {m′′}. It and
the consumption of the m′′ empties the queue Qz such that Qi = ∅, Qj =
∅, Qk = ∅, Qq = ∅, Qt = ∅, Qz = ∅.

At this level we can conclude that the defined sequence composition operator
preserves realizability.

The proofs for the choice and loop operators follow the same inductive
schema. We do not present these proofs due to space limitations. A sketch of
these proofs is given in [6].
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4 CCP Model: Refinement-Based Realizability

The proofs reported in the previous section are handmade. In order to give full
confidence in our results on correct-by-construction realizability, we designed a
whole formal development of this proof using refinement. The Event-B method
has been set up as follows.

4.1 The Refinement Strategy

The refinement operator offered by the Event-B method proved efficient to han-
dle the complex proofs associated to each operators. This operator allowed us
to handle the realizability property incrementally by introducing first equiva-
lence, then synchronizability and finally well formedness in specific refinements.
Therefore, the following refinement strategy has been set up:

–Root Model. The root model defines the conversation protocols. It introduces
basic CP. Each composition operator is defined as an event which incremen-
tally builds the final CP obtained by introducing a final state. All the built
CP satisfy an invariant requiring DC (deterministic choice, Condition 1). This
model also declares a prophecy variable [1] as a state variable. This variable
defines an arbitrary numbers of exchanged messages and is used to define a
variant in order to further prove well formedness.

–First Refinement: The Synchronous Model. The second model is obtained
by refining each event (composition operator) to define the synchronous pro-
jection. A gluing invariant linking the CP to the synchronous projection is
introduced. The equivalence property is proved at this level. It is defined as
an invariant preserved by all the events encoding a composition operator.
This projection represents the synchronous system, it preserves the message
exchanges order between peers and hides the asynchronous exchanges.

–Second Refinement: The Asynchronous Model. The last model introduces
the asynchronous projection. Each event (composition operator) is refined to
handle the asynchronous communication. Synchronous and asynchronous pro-
jections are linked by another gluing invariant. Sending and receiving actions
together with queue handling actions and variant decreasing of the prophecy
variable are introduced. They are necessary to prove synchronizability and
well formedness expressed as invariants. The refinement of the synchronous
models in an asynchronous model eases the proof process.

At the last refinement, realizability is proved thanks to invariants preserva-
tion and to the inductive proof process handled by Event-B using the Rodin
platform.

Next sections sketches this development. For each refinement step, we intro-
duce the relevant definitions, axioms and theorems needed to build the model.
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4.2 The Root Model

It describes the notion of CP and introduces the definition of each operator at
the CP level. Each introduced Event-B event corresponds to the formalisation
of one operator defined in Sect. 3.1.

Table 2. An excerpt of the LTS CONTEXT.

LTS CONTEXT
SETS PEERS, MESSAGES , CP STATES.
CONSTANTS CPs B, DC, ISeqF, NDC, . . .
AXIOMS

axm1: CPs B ⊆ CP STATES × PEERS × MESSAGES× PEERS × CP STATES×N

– Determinstic CP definition DC
axm2 Cond1: NDC ⊆ CPs B
axm3 Cond1: ∀Trans2, Trans1·(Trans1 ∈ CPs B ∧ Trans2 ∈ CPs B∧

SOURCE STATE(Trans1) = SOURCE STATE(Trans2)∧
LABEL(Trans1) = LABEL(Trans2)∧
DESTINATION STATE(Trans1) �= DESTINATION STATE(Trans2))

⇒{Trans1, Trans2} ⊆ NDC
axm4 Cond1: DC = CPs B \ NDC

– Independent sequence freeness definition ISEQF
axm5 Cond3: ISeqF ⊆ CPs B
axm6 Cond3: ∀ cp b · ( cp b ∈ CPs B ∧

(PEER SOURCE(cp b) = LAST SENDER PEERS(SOURCE STATE(cp b)) ∨
PEER SOURCE(cp b) = LAST RECEIVER PEERS(SOURCE STATE(cp b))))

⇒ {cp b} ⊆ ISeqF
. . .

End

Required Properties for CPs (cf. Table 2). Table 2 presents part of the
Event-B context used at the abstract level. We introduce, using sets and con-
stants, the whole basic definitions of messages, CP states, basic CPs, etc. A set
of axioms is used to define the relevant properties of these definitions.
For example, in axiom axm1, a CP is defined as a set of transitions with a source
and target state, a message and a source and target peers. axm3 Cond1 defines
what a non deterministic CP is using the NDC set. This NDC set characterises
all the non deterministic choices in a CP. Observe that axiom axm4 Cond1
defines the DC property in Definition 10 of Sect. 2.2.

The Root Machine (cf. Table 4). This model corresponds to the definition
of the CP LTS. Each operator corresponds to one event and contributes to build
a given CP represented in the state variable BUILT CP which shall define
deterministic CP only (see invariant inv1 in Table 3).

Table 3. An excerpt of the invariants of the LTS model.

Invariants
inv1: BUILT CP ⊆ DC

. . .
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The Add Seq event corresponds to the sequence operator of Definition 11 of
Sect. 3.1. Its effect is to add a given basic CP , namely Some cp b to the currently
built CP (union operation in action act1) and sets up the new final states in
action act3. This event is triggered only if the relevant conditions identified in
Sect. 3.1 holds (guards). For example, it is clearly stated that the independent
sequence property ISeqF shall hold before adding another CP in sequence.
This condition is given by guard grd3 (see Table 4).

Table 4. An excerpt of the LTS model.

INITIALISATION�
EVENTS

Add Seq �
Any Some cp b
Where

grd1: Some cp b ∈ cps b
grd2: MESSAGE(Some cp b) �= End
grd3: Some cp b ∈ ISeqF
grd4: SOURCE STATE(Some cp b) ∈ CP Final states
. . .

Then
act1: BUILT CP := BUILT CP ∪ {Some cp b}
act3: CP Final states := (CP Final states ∪

{DESTINATION STATE(Some cp b)})\
{SOURCE STATE(Some cp b)}

. . .
End

Add Choice � . . .

Add Loop � . . .

Add End � . . .
End

Up to now, no proof related to realizability is performed. We have just stated
that all the built CPs are deterministic (they belong to the DC set of CPs which
represent a condition for the ralizability property of Definition 10 in Sect. 2.2.

4.3 First Refinement: Synchronous Model

The objective of the first refinement is to build the synchronous projection corre-
sponding to Definition 4. Here again, before building this projection, some prop-
erty definitions are required, in particular for equivalence (≡), denoted EQUIV
in Event B models.

Required Properties for Synchronous Projection (cf. Table 5). The def-
inition of the state-transitions system corresponding to the synchronous pro-
jection is given by the set CPs SY NC B defined by axiom axm1 of Table 5.
Actions (send ! and receive ?) are introduced. Then, two other important axioms,
namely axm 1.a and axm 1.a1, are given to define the equivalence between a
CP and its synchronous projection. The EQUIV relation is introduced. It char-
acterises the set of CPs that are equivalent to their synchronous projection.
axm 1.a1 formalises Definition 7 of Sect. 2.2.
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Table 5. An excerpt of the LTS SYNC CONTEXT.

LTS SYNC CONTEXT, EXTENDS LTS CONTEXT
SETS ACTIONS. CONSTANTS CPs B , EQUIV, . . .
AXIOMS

axm1: CPs SY NC B ⊆ CP STATES × ACTIONS × MESSAGES × PEERS×
PEERS × ACTIONS × MESSAGES × CP STATES × N

– Equivalence of CP and Synchronous projection
axm 1.a: EQUIV ∈ CPs B �� CPs SYNC B
axm 1.a1: EQUIV = { Trans 
→ S Trans | Trans ∈ CPs B ∧ S Trans ∈ CPs SYNC B ∧

SOURCE STATE(Trans) = S SOURCE STATE(S Trans) ∧
DESTINATION STATE(Trans) = S DESTINATION STATE(S Trans) ∧
PEER SOURCE(Trans) = S PEER SOURCE(S Trans) ∧
PEER DESTINATION(Trans) = S PEER DESTINATION(S Trans) ∧
MESSAGE(Trans) = S MESSAGE(S Trans) ∧
INDEX(Trans) = S INDEX(S Trans) }

. . .
End

Table 6. An excerpt of the invariants of the LTS Synchronous model.

Invariants
inv1: BUILT SY NC ⊆ CPs SY NC B
inv 1.a: ∀Trans·∃S Trans·(Trans ∈ BUILT CP ∧ S Trans ∈ BUILT SY NC∧

BUILT CP �= ∅)⇒Trans 
→ S Trans ∈ EQUIV

The Synchronous Projection (cf. Table 7). The first refinement intro-
duces the synchronous projection of the BUILT CP defined by variable
BUILT SY NC in Table 7. Table 6 introduces through invariant inv 1.a. The
equivalence (≡) property corresponding to Condition 2.a in Eq. 2. The invari-
ant requires equivalence between a CP and its synchronous projection. Invariant
inv2 of Table 6 describes the equivalence property using the EQUIV relation

Table 7. An excerpt of the LTS Synchronous model.

INITIALISATION
. . .

EVENTS

Add Seq Refines Add Seq �
Any

S Some cp b, Some cp sync b
Where

grd1: Some cp sync b ∈ cps sync b
grd3: S SOURCE STATE(Some cp sync b) ∈ CP Final states
grd4: S Some cp b ∈ ISeq
grd8: MESSAGE(S Some cp b) �= End
grd9: MESSAGE(S Some cp b) = S MESSAGE(Some cp sync b)
. . .

With Some cp b: Some cp b = S Some cp b
Then

act1: BUILT CP := BUILT CP ∪ {S Some cp b}
act2: BUILT SY NC := BUILT SY NC ∪ {Some cp sync b}

. . .
End
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defined in the context of Table 5. So, one part of the realizability property (i.e.
CP ≡ Syssync) of Definition 10 is already proved at this refinement level.
The event Add Seq or sequence operator (Table 7) refines the same event of
the root model. It introduces the BUILT SY NC set corresponding to the syn-
chronous projection as given in Definition 4. Here, again, the Add Seq applies
only if the conditions in the guards hold. The With clause provides a witness to
glue Some cp b CP with its synchronous version.

4.4 Second Refinement: Asynchronous Model

The second refinement introduces the asynchronous projection with sending
and receiving peers actions. Well formedenss and synchronizability remain to
be proved in order to complete realizability preservation (Table 8).

Table 8. An excerpt of the LTS ASYNC CONTEXT.

CONTEXT LTS ASYNC CONTEXT EXTENDS LTS SYNC CONTEXT
SETS A STATES, . . . ,
CONSTANTS CPs ASYNC B, SYNCHRONISABILITY, WF, . . .
AXIOMS

axm1: CPs ASY NC B ∈ (A STATES × ETIQ × N) 
 →A STATES
– Synchronisability property

axm 1.b: SYNCHRONISABILITY ∈ CPs SYNC B �� R TRACE B
axm 1.b1: SYNCHRONISABILITY = {S Trans
→ R Trans | S Trans ∈ CPs SYNC B ∧

R Trans ∈ R TRACE B ∧ S INDEX(S Trans) = R INDEX(R Trans) ∧
S SOURCE STATE(S Trans) = R SOURCE STATE(R Trans) ∧
S PEER SOURCE(S Trans) = R PEER SOURCE(R Trans) ∧
S MESSAGE(S Trans) = R MESSAGE(R Trans) ∧
S PEER DESTINATION(S Trans) = R PEER DESTINATION(R Trans) ∧
S DESTINATION STATE(S Trans) = R DESTINATION STATE(R Trans)}

– Well formedness property
axm 1.c: WF ∈ A TRACES → QUEUE
axm 1.c1: ∀ A TR,queue · ( A TR ∈ A TRACES ∧ queue ∈ QUEUE ∧ queue = ∅ )
⇒ A TR 
→ queue ∈ WF
. . .

End

The Asynchronous Projection (cf. Tables 10 and 11). The invariants
associated to this model are presented in Table 9. In particular, the proper-
ties of synchronizability, expressed in invariant axm 1.b used in Definition 10
(Sync(Syssync , Sysasync)), and of well formedness, expressed in invariant axm 1.c
used in Definition 10 (WF (Sysasync)) are introduced in the invariant of this
refinement level. These two properties complete the proof of realizability.

At these level, each event corresponding to a composition operator is refined
by three events: one to handle sending of messages (Add Seq send) on Table 10,
one for receiving messages (Add Seq receive) and a third one (Add Seq send
receive) on Table 11 refining the abstract Add seq event.

Tables 10 and 11 define these events. Sending and receiving events are inter-
leaved in an asynchronous manner. Once a pair of send and receive events
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Table 9. An excerpt of the invariants of the LTS Asynchronous model.

Invariants
inv1 BUILT SY NC ⊆ CP SY NC B
inv2 REDUCED TRACE ⊆ R TRACE B
inv3 A TRACE ⊆ A TRACES
inv 1.b ∀S Trans·∃R Trans·(S Trans ∈ BUILT SY NC ∧ R Trans ∈

REDUCED TRACE)⇒
S Trans 
→ R Trans ∈ SYNCHRONISABILITY

inv 1.c ∀A Trans·(A Trans ∈ A TRACES ∧ MESSAGE(Last cp trans) = End∧
A TRACE �= ∅)⇒A Trans 
→ queue ∈WF

inv6 BUILT ASY NC ⊆ CP ASY NC B
. . .

Table 10. An excerpt of the LTS Asynchronous model.

Event Add Seq Send �
Any

send, lts s, lts d,msg, index
Where
grd1: ∃send st src, send st dest·((lts s 
→ send st src) ∈ A GS ∧ ((send st src 
→
(Send 
→ msg 
→ lts d) 
→ index) 
→ send st dest) ∈ CPs ASY NC B∧ . . .
. . .
Then
act1: A TRACE := A TRACE ∪ {Reduces Trace states 
→ St Num 
→
Send 
→ lts s 
→ msg 
→ lts d 
→ Reduces Trace states 
→
(St Num + 1) 
→ A Trace index}
act2: queue, back := queue ∪ {lts d 
→ msg 
→ back}, back + 1
act3: A GS := A Next States({send →
} A GS 
→ queue)
. . .

End

has been triggered, the event Add Seq send receive records that the emission-
reception is completed. This event increases the number of received messages
(action act5). Traces are updated accordingly by the events, they are used for
proving the invariants.

4.5 Instantiation and Axiom Validation

To illustrate our approach, we have instantiated our model on a toy example
corresponding to the CP depicted on Fig. 1. The labels of the transitions of the
form mp−→p′

denote a message m sent by peer p to the peer p′.

Fig. 1. Four messages exchanges in sequence for a electronic commerce system

The whole Event-B model has been instantiated. The context of Table 12 shows
the instantiation of the model for the CP of Fig. 1. It also shows that the axioms
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Table 11. An excerpt of the LTS Asynchronous model.

Event Add Seq Receive �
Any

send, receive, lts s, lts d,msg, index
Where
grd1: queue �= ∅ ∧ lts d 
→ msg 
→ front ∈ queue
grd2: ∃receive st src, receive st dest·(((lts d 
→ receive st src) ∈ A GS)∧
((receive st src 
→ (Receive 
→ msg 
→ lts s) 
→ index) 
→ receive st dest)
∈ CPs ASY NC B ∧ . . .
. . .

Then
act1: A TRACE := A TRACE ∪ {Reduces Trace states 
→ St Num 
→
Receive 
→ lts s 
→ msg 
→ lts d 
→ Reduces Trace states 
→ (St Num + 1)

→ A Trace index}
act2: queue := queue \ {lts d 
→ msg 
→ front}
. . .

End

Event Add Seq Send − Receive Refines Add Seq �
Any

A Some cp b,A Some cp sync b, Send cp async b, Receive cp async b, R trace b
Where
grd1: A MESSAGE(Send cp async b) = A MESSAGE(Receive cp async b)
grd2: ACTION(Receive cp async b) = Receive ∧ ACTION(Send cp async b) = Send
grd3: A Some cp b ∈ ISeq
grd4: MESSAGE(A Some cp b) = A MESSAGE(Send cp async b)
. . .

With S Some cp b : S Some cp b = A Some cp b,
Some cp sync b : Some cp sync b = A Some cp sync b

Then
act1: BUILT CP := BUILT CP ∪ {A Some cp b}
act2: BUILT SY NC := BUILT SY NC ∪ {A Some cp sync b}
act3: BUILT ASY NC := BUILT ASY NC ∪ {Send cp async b} ∪ {Receive cp async b}
act4: REDUCED TRACE := REDUCED TRACE ∪ {R trace b}
. . .

End
. . .

End

defined in the model are inhabited. The ProB [15] model checker associated to
Event-B on the Rodin platform has been used for automatic validation.

Other case studies borrowed from the research community dealing with real-
izability have been used to instantiate our model. These case studies use the
whole composition operators we defined.

4.6 Assessment

Table 13 gives the results of our experiments. One can observe that all the proof
obligations (POs) have been proved. A large amount of these POs has been
proved automatically using the different provers associated to the Rodin plat-
form. Interactive proofs of POs required to combine some interactive deduction
rules and the automatic provers of Rodin. Few steps were required in most of
the cases, and a maximum of 10 steps was reached.
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Table 12. An excerpt of the LTS CONTEXT instantiation.

LTS CONTEXT instantiation EXTENDS LTS CONTEXT
CONSTANTS s0, s1, s2, s3, s4, s5, Connect, Buy, Contact, Request BBN, End, Buyer, . . .
AXIOMS

axm1: partition(PEERS,{Buyer},{e shop},{Bank},{Pend})
axm2: partition(MESSAGES,{Connect},{Buy},{Contact},{Request BBN},{End})
axm3: partition(CP STATES, {s0} ,{s1} ,{s2} ,{s3} ,{s4}, {s5})
axm4: CPs B= {s0 
→ Buyer 
→ Connect 
→ e shop 
→ s1 
→ 1, . . . ,
axm5: CPs SY NC B = {s0 
→ Send 
→ Connect 
→ e shop 
→ Buyer 
→ Receive 
→ . . .
axm6: partition(A STATES, {B s0}, {B s1}, {B s2}, {B s3}, {e s0}, {e s1}, . . . )
axm7: CPs ASY NC B = {((B s0 
→ (Send 
→ Connect 
→ e shop) 
→ 1) 
→ B s1), . . . }
axm8: A TRACES = {s 
→ 0 
→ Send 
→ Buyer 
→ Connect 
→ e shop 
→ s 
→ 1 
→ 1, . . . }
axm9: R TRACE B = {s0 
→ Buyer 
→ Connect 
→ e shop 
→ s1 
→ 1, . . . }
axm10: S Next States = {{((B s0 
→ (Send 
→ Connect 
→ e shop) 
→ 1) 
→ B s1) →
}

{(Buyer 
→ B s0), (e shop 
→ e s0), (Bank 
→ Bk s0) →
}
{(Buyer 
→ B s1), (e shop 
→ e s0), (Bank 
→ Bk s0)}, . . . }

axm11: A Next States = {{((B s0 
→ (Send 
→ Connect 
→ e shop) 
→ 1) 
→ B s1) →
}
{(Buyer 
→ B s0), (e shop 
→ e s0), (Bank 
→ Bk s0) →
} ∅ 
→
{(Buyer 
→ B s1), (e shop 
→ e s0), (Bank 
→ Bk s0)}, . . . }

. . .
END

Table 13. RODIN proofs statistics

Event-B Model Interactive proofs Automatic proofs Proof obligations

Abstract context 06 (100%) 0 (0%) 06 (100%)

Synchronous context 02 (100%) 0 (0%) 02 (100%)

Asynchronous context 01 (33.33%) 02 (66.67%) 03 (100%)

Abstract model 28 (58.33%) 20 (41.67%) 48 (100%)

Synchronous model 39 (39%) 61 (61%) 100 (100%)

Asynchronous model 73 (38.83%) 115 (61.17%) 188 (100%)

Total 148 (100%) 198 (100%) 347 (100%)

5 Related Work

Several approaches addressed choreography realizability. In [10], the authors
identify three principles for global descriptions under which a sound and com-
plete end-point projection is defined. If these rules are respected, the projection
will behave as specified in the choreography. This approach is applied to BPMN
2.0 choreographies [18]. [20] propose to modify their choreography language to
include new constructs (choice and loop). During projection, particular commu-
nication is added to enforce the peers to respect the choreography specification.
In [12], the authors propose a Petri Net-based formalism for choreographies
and algorithms to check realizability and local enforceability. A choreography is
locally enforceable if interacting peers are able to satisfy a subset of the require-
ments of the choreography. To ensure this, some message exchanges in the dis-
tributed system are disabled. In [21], the authors propose automated techniques
to check the realizability of collaboration diagrams for different communication
models.
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Beyond advocating a solution for enforcing realizability, our contribution dif-
fers from these approaches as follows. We focus on asynchronous communication
and choreographies involving loops. Our approach is non-intrusive; we do not add
any constraints on the choreography language or specification, and the designer
neither has to modify the original choreography specification, nor the peer mod-
els. We considerably reduce the verification complexity since there is no need
to re-build the distributed system by composition of peers to check the realiz-
ability. Instead of that, we rely on a correct-by-construction approach based on
sufficient conditions for realizability at the CP level. The technique we rely on
here shares some similarities with counterexample-guided abstraction refinement
(CEGAR) [11]. In CEGAR, an abstract system is analyzed for temporal logic
properties. If a property holds, the abstraction mechanism guarantees that the
property also holds in the concrete design. If the property does not hold, the
reason may be a too coarse approximation by the abstraction. In this case, the
counterexample generated by the model checker, is used to refine the system to
a finer abstraction and this process is iterated.

To the best of our knowledge, our approach is the first correct-by-construction
method which enables the designer to specify realizable CP avoiding behavioural
errors in the distributed systems. By doing so, we propose an a priori verification
method where the problems of state explosion and scalability are discarded.
Other proof based techniques thant Event-B like Coq [3] or Isabelle [17] could
have been used after defining the refinement operation. Our approach extensively
uses built-in refinement operation and inductive proof schemes of Event-B.

6 Conclusion

This paper presents an a priori approach to build realizable CPs based on
a correct-by-construction method. A language allowing to incrementally build
complex realizable CPs from a set of basic realizable ones is defined. It offers a set
of composition operators preserving realizability. Our proposal is proved to be
sound and correct using the proof and refinement based formal method Event-B.
Thanks to the use of arbitrary sets of values for parameters in our Event-B mod-
els, ou approach is scalable. Moreover, we have validated this model using several
case studies. According to [4], this instantiation process is defined either using
model checking to animate and test the CPs associated to each case study; or
by explicitly supplying a witness to each parameter of the events in the Event-B
model to build the CP associated to the case study.

As a short term perspective, we aim at extending our model with an operator
enabling to compose entire CPs instead of requiring incremental composition of
basic CPb. Furthermore, we intend to define a set of patterns for realizable CPs
and studying the completeness of our language in order to identify the class of
real-world asynchronously communicating systems that can be specified. Last,
we aim at providing the designers with an engine for automatic instantiation of
realizable CPs.
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